67 research outputs found

    A Novel Convex Relaxation for Non-Binary Discrete Tomography

    Full text link
    We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations

    An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging

    Get PDF
    The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed

    3D Imaging of Nanomaterials by Discrete Tomography

    Get PDF

    A Multi-Channel DART algorithm

    Get PDF
    Tomography deals with the reconstruction of objects from their projections, acquired along a range of angles. Discrete tomography is concerned with objects that consist of a small number of materials, which makes it possible to compute accurate reconstructions from highly limited projection data. For cases where the allowed intensity values in the reconstruction are known a priori, the discrete algebraic reconstruction technique (DART) has shown to yield accurate reconstructions from few projections. However, a key limitation is that the benefit of DART diminishes as the number of different materials increases. Many tomographic imaging techniques can simultaneously record tomographic data at multiple channels, each corresponding to a different weighting of the materials in the object. Whenever projection data from more than one channel is available, this additional information can potentially be exploited by the reconstruction algorithm. In this paper we present Multi-Channel DART (MC-DART), which deals effectively with multi-channel data. This class of algorithms is a generalization of DART to multiple channels and combines the information for each separate channel-reconstruction in a multi-channel segmentation step. We demonstrate that in a range of simulation experiments, MC-DART is capable of producing more accurate reconstructions compared to single-channel DART

    A cone-beam X-ray computed tomography data collection designed for machine learning

    Get PDF
    Unlike previous works, this open data collection consists of X-ray cone-beam (CB) computed tomography (CT) datasets specifically designed for machine learning applications and high cone-angle artefact reduction. Forty-two walnuts were scanned with a laboratory X-ray set-up to provide not only data from a single object but from a class of objects with natural variability. For each walnut, CB projections on three different source orbits were acquired to provide CB data with different cone angles as well as being able to compute artefact-free, high-quality ground truth images from the combined data that can be used for supervised learning. We provide the complete image reconstruction pipeline: raw projection data, a description of the scanning geometry, pre-processing and reconstruction scripts using open software, and the reconstructed volumes. Due to this, the dataset can not only be used for high cone-angle artefact reduction but also for algorithm development and evaluation for other tasks, such as image reconstruction from limited or sparse-angle (low-dose) scanning, super resolution, or segmentation

    A parametric level-set method for partially discrete tomography

    Get PDF
    This paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We represent the geometry of the anomaly using a level-set function, which we represent using radial basis functions. We pose the reconstruction problem as a bi-level optimization problem in terms of the background and coefficients for the level-set function. To constrain the background reconstruction we impose smoothness through Tikhonov regularization. The bi-level optimization problem is solved in an alternating fashion; in each iteration we first reconstruct the background and consequently update the level-set function. We test our method on numerical phantoms and show that we can successfully reconstruct the geometry of the anomaly, even from limited data. On these phantoms, our method outperforms Total Variation reconstruction, DART and P-DART.Comment: Paper submitted to 20th International Conference on Discrete Geometry for Computer Imager

    Emulation of X-ray Light-Field Cameras

    Get PDF
    X-ray plenoptic cameras acquire multi-view X-ray transmission images in a single exposure (light-field). Their development is challenging: designs have appeared only recently, and they are still affected by important limitations. Concurrently, the lack of available real X-ray light-field data hinders dedicated algorithmic development. Here, we present a physical emulation setup for rapidly exploring the parameter space of both existing and conceptual camera designs. This will assist and accelerate the design of X-ray plenoptic imaging solutions, and provide a tool for generating unlimited real X-ray plenoptic data. We also demonstrate that X-ray light-fields allow for reconstructing sharp spatial structures in three-dimensions (3D) from single-shot data

    Atomic super-resolution tomography

    Get PDF
    We consider the problem of reconstructing a nanocrystal at atomic resolution from electron microscopy images taken at a few tilt angles. A popular reconstruction approach called discrete tomography confines the atom locations to a coarse spatial grid, which is inspired by the physical a priori knowledge that atoms in a crystalline solid tend to form regular lattices. Although this constraint has proven to be powerful for solving this very under-determined inverse problem in many cases, its key limitation is that, in practice, defects may occur that cause atoms to deviate from regular lattice positions. Here we propose a grid-free discrete tomography algorithm that allows for continuous deviations of the atom locations similar to super-resolution approaches for microscopy. The new formulation allows us to define atomic interaction potentials explicitly, which results in a both meaningful and powerful incorporation of the available physical a priori knowledge about the crystal's properties. In computational experiments, we compare the proposed grid-free method to established grid-based approaches and show that our approach can indeed recover the atom positions more accurately for common lattice defects

    A Novel Tomographic Reconstruction Method Based on the Robust Student's t Function For Suppressing Data Outliers

    Get PDF
    Regularized iterative reconstruction methods in computed tomography can be effective when reconstructing from mildly inaccurate undersampled measurements. These approaches will fail, however, when more prominent data errors, or outliers, are present. These outliers are associated with various inaccuracies of the acquisition process: defective pixels or miscalibrated camera sensors, scattering, missing angles, etc. To account for such large outliers, robust data misfit functions, such as the generalized Huber function, have been applied successfully in the past. In conjunction with regularization techniques, these methods can overcome problems with both limited data and outliers. This paper proposes a novel reconstruction approach using a robust data fitting term which is based on the Student’s t distribution. This misfit promises to be even more robust than the Huber misfit as it assigns a smaller penalty to large outliers. We include the total variation regularization term and automatic estimation of a scaling parameter that appears in the Student’s t function. We demonstrate the effectiveness of the technique by using a realistic synthetic phantom and also apply it to a real neutron dataset

    Atomic super-resolution tomography

    Get PDF
    We consider the problem of reconstructing a nanocrystal at atomic resolution from electron microscopy images taken at a few tilt angles. A popular reconstruction approach called discrete tomography confines the atom locations to a coarse spatial grid, which is inspired by the physical a priori knowledge that atoms in a crystalline solid tend to form regular lattices. Although this constraint has proven to b
    • …
    corecore